
Journal of Applied Mechanics and Technical Physics, Voi. 36, No. 5, 1995 

N U M E R I C A L  S O L U T I O N  OF N A V I E R - S T O K E S  EQUATIONS 

FOR A N  I N C O M P R E S S I B L E  LIQUID IN C H A N N E L S  

W I T H  A P O R O U S  INSERT 

N. T. Danaev, Sh. Smagulov, and N. M. Temirbekov UDC 519.6:532.516 

This work is devoted to a numerical investigation of stationary flows in curvilinear channels with a 
porous insert. An iterative algorithm is considered, for which it is established that  the number of iterations, if 
the calculation process is convergent, depends weakly on the hydraulic permeability value of the porous layer. 
Data of the numerical computations and their analysis are given. 

In mathematical  simulation of the laminar flow of an isothermal incompressible liquid in channels with 
a porous insert, which is a partition packed by beads of equal diameter, the following system of equations is 
widely used [1-4]: 

(OU i + ~  ukOUi~ OP ~ 0 [ {OU i OUk~] #Ui i=1,2,3, divu  
at k=, b T / +  ax---7 = . . =  + R ' 

0, 

where u = (U1,U 2, U 3) is the velocity vector, P is the pressure, p is the density, and # is the coefficient 
of dynamic viscosity. In this case the term ~u/R takes into account the friction forces arising in the porous 
region due to the presence of a solid phase (beads). To relate the viscous stress tensor to the velocity vector 
components the notion of effective viscosity #el is introduced in the same way as is done in discribing turbulent 
flOWS. 

In verification of the model described above the determination of the value of #el, which is widely 
different in the literature, presents the greatest difficulty. For example, in [1] it is proposed to choose #r in 
the form 

1, 
where A is an empirical coefficient, whose numerical value should be adopted by comparing the calculated 
and experimental data (A = 30-35), whereas in [2] #,f is taken in the from 

~/~(1 ~< ~ ~ 200) inside the porous layer, 

1 # outside the layer. 

Thus the adoption of a reasonable coefficient #e~ is in itself an independent problem of mathematical 
simulation. In addition, a comparison of calculation results for a direct-flow reactor with a fixed granulated 
layer, reported in [1-4], with different values o f /~ f  (in [3, 4] /~ef = # = const) shows that  they coincide 
qualitatively. Comparison of quantitative characteristics with physical data is hindered, since no experiments 
have been published in which the continuous development of the flow in channels with a porous insert is 
studied in detail. Furthermore, although attempts have been undertaken to measure characteristics inside the 
granulated layer, these data frequently disagree, which is primarily due to difficulties in measurements inside 
the layer [5-7]. 
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Fig. 1 

In this connection, to get the most reliable picture of liquid flow through porous media it is worthwhile 
to conduct investigations on the basis of simple mathematical models that allow an effective computational 
realization. In the present work, flows of an incompressible liquid with a constant viscosity coefficient through 
porous inserts in axisymmetric channels with curvilinear boundaries are studied on the basis of the stationary 
Navier-Stokes equations. 

To describe the stationary flows of viscous incompressible liquid in curvilinear boundary channels with 
a porous insert, the Navier-Stokes equations in the variables (~, 12) can be written in cylindrical coordinates 
a s  

Ox Or - Re A ~ + ~ r r  - d i v  .g rad~  , div graA~ = ~ ,  (1) 

where 

U = O~ 10q l  OU OV [ 0 in D1 U D3 
O z  ; V . . . .  ; = . . . . . . . . . . .  k ( x , r )  = [ r Or 07" Ox ' ko(x , r )  in D2 ; 

and ko(x, r) is the hydraulic permeability of the porous medium. 
We consider the following boundary conditions for the curvitinear domain D = Di U D2 U D3, shown 

in Fig. 1: 

at the inlet boundary F1 

= ,I,o(,-), = ( , to ,  are known f unc t i ons )  ; 

at the symmetry axis F2 

q / = f l = 0 ;  

at the outlet boundary P3, located "far" enough from the porous insert, we assume that OqZ/Ox = Ofl/Ox = 0, 
i.e., impose "soft" boundary conditions; 

at the solid wall F4 

0~ 
q~=const, On =0"  

In the orthogonal curvilinear coordinate system, system (1) can be written as 

(Lt + L2) ~ = -L3k9 ; 

Oq t r Oq I ,] + ~q2 r ~ Oq 2 

L2~'/= ~q2 [ -  ( + - -  

(2) 

(3) 

(4) 

Here 
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The hydraulic permeability of the porous medium was taken into account by the expression 

150 (1 - e) 2 G2 G = da/d, 
k0 - Re e 3 ' 

where e is the porosity coefficient, da is the inner channel diameter, and d is the characteristic diameter of 
granules of the porous material. 

For numerical construction of a curvilinear grid in the calculational domain, the method described 
in [8] was used. 

In Fig. 2, a finite-difference curvilinear grid is depicted for a domain that is characteristic for the 
boundary problems under consideration. While verifying the orthogonality of this grid it was found that 

max I g 1 2 / ~ 1  < 0.0288. 

To solve numerically the system of differential equations (3) and (4), we consider the following finite- 
difference iteration splitting scheme [9]: 

fp+l /3  _ f p  
�9 ..1_ L l , h  f ~ n + l / 3  q.. L2 ,h  ~ n  = _ ( L 3 , h  _ A h ) ~ n ,  

T 

+ Ll,h fl n+1/3 + L2,h F/n+2/3 = --(L3,h -- Ah)k  ~ , 

~~n-t-1 - -  ~n.-I-2/3 

= --(L3,h -- Ah)(ql "+1 -- qg~), 
T 

..Z q2 ~ . 

(5) 

(6) 

(7) 

(8) 

Here Ll,h , L2,h, and L3, h are difference equivalents of the differential operators L1, L2, and L3, in which 
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convective terms are approximated with due regard to the sign of the flow velocity; the operator Ah has a 
structure determined by the procedure of introducting an auxiliary function, described in [10]. 

The boundary condition (2) at a solid wall is taken into account by the Toma formula 

1 _ - - 2 ( q 2 ~ 2 ) k , g 2 - 1 / 2  (9) 

~k,N 2 = h-~2 rk,N2_l/2(g22)k,N2-1/2 ' 

where (g22)k,N2_l]2 1 2 2 2 = (z~2,k,g2-1/2) + (z~2k,N~_l/2) �9 
The algorithm of the suggested method is as follows: 
1. In the first stage, from relations (5) and (6), which have uniform boundary conditions, we find the 

values of ~n+2/3 inside the computational domain by the scalar sweep method, 
2. Then, using expression (8), we exclude ~l '~+1 from relation (7) and obtain a finite-difference equation 

for determining ~n+l: 

.~{ ( O , l , n + l )  + ( 1 ,l ,n+l) } _ T ( L 3 , h _ A h ) q 2 n + l = ~ n + 2 / a + , r ( L 3 , h  _ A h ) ~ n ,  (10) 
r ~ q l  ~1 ~rr%~ ~2 

which is solved at the given boundary conditions by the iteration overrelaxation method; 
3. After finding ~,~+1 inside the grid domain D, we determine ~l n+l from formula (8). 
In doing so, the calculations by the finite difference scheme (5)-(8) at the given initial approximation 

~0 are continued until a steady-state criterion is fulfilled: 

max ]~l n+l - ft" I ~< re, x E Dh,  (11) 

where e is a preset quantity characterizing the accuracy of iteration. If the steady-state criterion is fulfilled, 
the final values of vorticity on the boundary are calculated from formula (9). 

At the channel inlet, the values of the stream function and of vorticity are given by the expressions 

v 4 4 

q2 -- 2a 2 + r ,  ~ . . . .  a2 7 . 

The computations by the scheme (5)-(10) were initially performed for the grid shown in Fig. 2 at 
r = 0.05; the grid poihts were 41 x 21. The numerical calculations were carried out for the following values of 
porosity coefficient: 

1) e ( r ) = l  at 0~<~<0.5; 

2) = { 

3) e(r) = { 

4) e(r) = { 

5) = { 

6) e(r) = { 

0.5 at 0~<7"~<0.2, 

(100r 2 + 101)/210 at 0.2 ~< r ~< 0.5; 

0.4 at 0 ~< r ~< 0.2, 

(10r 2 - 4 r + 4 ) / 9  at 0 . 2 < r ~ < 0 . 5 ;  

0.38 at 0 ~< r ~< 0.2, 

(0.62r 2 - 0 . 1 2 4 r + 0 . 3 8 )  at 0.2~<r~<0.5;  

0.3 .at 0 ~ < r ~ 0 . 2 ,  

(100r 2+59) /210  at 0.2~<r~<0.5;  

0.2 at 0~<r~<0.2 ,  

( 5 0 r  2 --  20r + 11)/45 at 0.2 ~< r ~< 0.5. 

Some results of the calculations for different variants of choice of e(r) for Re = 100 are given in Table 1. 
Here kmax is the maximal value of the drag coefficient of the porous medium, r and em~,x are the minimal 
and maximal porosity values of the layer, and N is the number of iterations. All the computations were 
performed on a BESM-6 computer in the same initial approximation until inequality (11) with e = 10 - 3  ~vas 
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kmax 

~ 

U. 

0 
300.0 
843.7 

1050.8 
2722.0 

12000.0 

~min 

1.0 
0.5 
0.4 
0.38 
0.3 
0.2 

~lll&X 

1.0 
0.5 
0.5 
0.473 
0.4 
0.3 

N 

97 
110 
112 
113 
117 
145 

TABLE 2 

R e  Xma x 

100 0.0599 
500 1.3761 

1000 1.4062 

Ym~x 

0.3540 
0,3748 
0.3998 

~max 

0.02204 
0.02931 
0.03801 

a 2  

J 

0.7 

TABLE 

Variant 
No. 

1 
2 
3 
4 
5 
6 

o 0.r 0.2 O.J 0.4 r 0.0 

Fig. 4 

fulfilled. As is seen from Table 1, the number of iterations necessary to fulfill the steady-state criterion (11) 
depends only slightly on the permeability variations of the porous layer. 

A set of isolines of the stream function for Re = 1000 is given in Fig. 3. From Fig. 3 and also from 
the calculations for Re = 100, 500 it is seen that. as a viscose gas flows through porous media, a vortex zone 
appears in the expanding sections of the diffuser. This zone occupies a vast space close to the porous insert 
and its size increases with increasing Re. 

Figure 4 shows radial profiles of the axial velocity component inside the porous layer at different values 
of the porosity coefficient: curves 1-3 are the profiles for the second, fifth, and sixth variants of e, respectively. 
From the profiles it is seen that the nonuniformity of the velocity over the channel vertical cross section inside 
the porous insert increases with decrease in the porosity coefficient, i.e., with increase in the porous medium 
drag. 

Table 2 gives the coordinates of the center of the recirculation zone and the values of ~ at the center 
for different Re. It is seen that with increase in Re the center of the recirculation zone moves toward the top 
corner in front of the porous insert, and the value of kgmax increases,'i.e., the vorticity becomes more intense. 

In the following calculations we consider the case of a channel with a cuvilinear boundary given by the 
Vitoshinskii function, which is widely used in practice: 

ro 0 <<. z <~ a / v ~ .  
r -= I 1  - (1--(-0 '~2 '~ (1--3x2/a2)  2 ' 

\ r l /  / (1 ~ 3 x 2 / a 2 )  3 

Here rl is the radius of the inlet section, ro is the radius of the outlet section, z is the coordinate along the 
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channel axis; and the parameter a is usually taken to be 4r0. The case where r0 = 0.5, rz = 0.2, and xl = 4.0 
is considered below. 

The calculation results for domain (12) are given in Figs. 8 and 9. Isolines of the stream function and 
of the vorticity for Re = 250, r = 0.4 are shown in Fig. 8a,b. The vorticity on the solid wall for different values 
of Re is given in Fig. 9, where lines 1-3 correspond to Re=1000, 500, and 100 at e = 0.2-0.3. Note that with 
increase in Re the value of the vortieity on the wall ahead of the porous insert increases. 

In Fig. 5, a computational domain for the Vitoshinskii channel is shown, and an orthogonal curvilinear 
grid is constructed. Figure 6 shows the flow pattern inside the Vitoshinskii channel with a porous insert for 
Re = 100 and r = 0.38-0.43. 

The results of the numerical calculations suggest that for small Reynolds numbers (Re ~ 60) separation- 
free flow is established in the diffusers of the Vitoshinskii channel, whereas for Re ~> 100 the recirculation 
zone appears in front of the porous insert. 

Finally we consider the case of an expanding-contracting channel with a computational domain 
bounded by the lines 

x=O, x = 2.5, r = 0 ,  
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a+b a - b  
r = T - t - - - ~ t a n h ( R ( x - x 0 ) ) = f l ( x )  at 0 < x ~ < 0 . 6 ,  

a T b a - b (12) 
r =  2 - t - - - ~ t a n h ( R ( x 0 p - x ) ) = f 2 ( x )  at 1 < ~ x < 1 . 5 ,  

r = f l ( 0 , 6 )  at 0 . 6 < x < 1 ,  r = f 2 ( 1 . 5 )  at 1 .5<x~<2 .5  ( x 0 = 0 . 3 ,  Xop=l.3). 

This domain and the curvilinear grid arrangement are shown in Fig. 7. 
The calculation results for a domain given by relations (12) are shown in Figs. 8 and 9. The isolines 

of the stream function and the vorticity at Re = 250, e = 0.4 are shown in Fig. 8a,b. The vorticity on the 
solid wall for different values of Re is given in Fig. 9, where lines 1-3 correspond to Re=1000, 500, and 100 
at e = 0.2-0.3. Note that with increase in Re the value of the vorticity at the wall ahead of the porous insert 
increases. 

The numerous calculation results suggest that the flow inside channels with a porous insert is vortical, 
and the vortex is generated as a result of interaction of the flowing medium with the porous material. In 
near-wall flows, the generation and diffusion of vortices originate from the channel walls. Increase in the value 
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of the drag coefficient of the porous material with constant Reynolds numbers affect only slightly the volume 
of the vortex zone, because the porous insert is placed far from the diffuser part of the channel. 

On the basis of the computations performed it was also established that: 
- -  at any set of determining parameters a retardation of the liquid flow takes place in front of the 

porous insert; 
- -  the character of the flow through the granulated layer over the horizontal cross sections of the insert 

is close to one-dimensional and depends weakly oll the character of liquid supply (at a constant flow rate); 
- -  the appearance of nonuniformities of the longitudinal velocity component is revealed in the form of 

so-called "ears," which strongly depend on the porosity coefficient. 
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